Extensions 1→N→G→Q→1 with N=C22×Dic7 and Q=C2

Direct product G=N×Q with N=C22×Dic7 and Q=C2
dρLabelID
C23×Dic7224C2^3xDic7224,187

Semidirect products G=N:Q with N=C22×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×Dic7)⋊1C2 = Dic74D4φ: C2/C1C2 ⊆ Out C22×Dic7112(C2^2xDic7):1C2224,76
(C22×Dic7)⋊2C2 = C22.D28φ: C2/C1C2 ⊆ Out C22×Dic7112(C2^2xDic7):2C2224,81
(C22×Dic7)⋊3C2 = C2×D14⋊C4φ: C2/C1C2 ⊆ Out C22×Dic7112(C2^2xDic7):3C2224,122
(C22×Dic7)⋊4C2 = D4×Dic7φ: C2/C1C2 ⊆ Out C22×Dic7112(C2^2xDic7):4C2224,129
(C22×Dic7)⋊5C2 = C23.18D14φ: C2/C1C2 ⊆ Out C22×Dic7112(C2^2xDic7):5C2224,130
(C22×Dic7)⋊6C2 = Dic7⋊D4φ: C2/C1C2 ⊆ Out C22×Dic7112(C2^2xDic7):6C2224,134
(C22×Dic7)⋊7C2 = C2×C23.D7φ: C2/C1C2 ⊆ Out C22×Dic7112(C2^2xDic7):7C2224,147
(C22×Dic7)⋊8C2 = C2×D42D7φ: C2/C1C2 ⊆ Out C22×Dic7112(C2^2xDic7):8C2224,179
(C22×Dic7)⋊9C2 = C22×C7⋊D4φ: C2/C1C2 ⊆ Out C22×Dic7112(C2^2xDic7):9C2224,188
(C22×Dic7)⋊10C2 = D7×C22×C4φ: trivial image112(C2^2xDic7):10C2224,175

Non-split extensions G=N.Q with N=C22×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×Dic7).1C2 = C14.C42φ: C2/C1C2 ⊆ Out C22×Dic7224(C2^2xDic7).1C2224,37
(C22×Dic7).2C2 = C23.11D14φ: C2/C1C2 ⊆ Out C22×Dic7112(C2^2xDic7).2C2224,72
(C22×Dic7).3C2 = C22⋊Dic14φ: C2/C1C2 ⊆ Out C22×Dic7112(C2^2xDic7).3C2224,73
(C22×Dic7).4C2 = C2×Dic7⋊C4φ: C2/C1C2 ⊆ Out C22×Dic7224(C2^2xDic7).4C2224,118
(C22×Dic7).5C2 = C2×C4⋊Dic7φ: C2/C1C2 ⊆ Out C22×Dic7224(C2^2xDic7).5C2224,120
(C22×Dic7).6C2 = C22×Dic14φ: C2/C1C2 ⊆ Out C22×Dic7224(C2^2xDic7).6C2224,174
(C22×Dic7).7C2 = C2×C4×Dic7φ: trivial image224(C2^2xDic7).7C2224,117

׿
×
𝔽